
Libft
Your very first own library

Summary:
This project involves coding a C library that will include numerous general purpose

functions for your programs.

Version: 18

Contents
I Introduction 2

II Common Instructions 3

III AI Instructions 5

IV Mandatory part 7
IV.1 Technical considerations . 7
IV.2 Part 1 - Libc functions . 8
IV.3 Part 2 - Additional functions . 9

V Bonus part 13

VI Submission and peer-evaluation 17

1

Chapter I

Introduction

C programming can be quite tedious without access to the highly useful standard func-
tions. This project aims to help you understand how these functions work by implement-
ing them yourself and learning to use them effectively. You will create your own library,
which will be valuable for your future C school assignments.

Take the time to expand your libft throughout the year. However, when working on a
new project, always check that the functions used in your library comply with the project
guidelines.

2

Chapter II

Common Instructions

• Your project must be written in C.

• Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check, and you will receive a 0 if
there is a norm error.

• Your functions should not quit unexpectedly (segmentation fault, bus error, dou-
ble free, etc.) except for undefined behavior. If this occurs, your project will be
considered non-functional and will receive a 0 during the evaluation.

• All heap-allocated memory must be properly freed when necessary. Memory leaks
will not be tolerated.

• If the subject requires it, you must submit a Makefile that compiles your source
files to the required output with the flags -Wall, -Wextra, and -Werror, using cc.
Additionally, your Makefile must not perform unnecessary relinking.

• Your Makefile must contain at least the rules $(NAME), all, clean, fclean and
re.

• To submit bonuses for your project, you must include a bonus rule in your Makefile,
which will add all the various headers, libraries, or functions that are not allowed in
the main part of the project. Bonuses must be placed in _bonus.{c/h} files, unless
the subject specifies otherwise. The evaluation of mandatory and bonus parts is
conducted separately.

• If your project allows you to use your libft, you must copy its sources and its
associated Makefile into a libft folder. Your project’s Makefile must compile
the library by using its Makefile, then compile the project.

• We encourage you to create test programs for your project, even though this work
does not need to be submitted and will not be graded. It will give you an
opportunity to easily test your work and your peers’ work. You will find these tests
especially useful during your defence. Indeed, during defence, you are free to use
your tests and/or the tests of the peer you are evaluating.

• Submit your work to the assigned Git repository. Only the work in the Git repos-
itory will be graded. If Deepthought is assigned to grade your work, it will occur

3

Libft Your very first own library

after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

4

Chapter III

AI Instructions

● Context
This project is designed to help you discover the fundamental building blocks of your 42
training.

To properly anchor key knowledge and skills, it’s essential to adopt a thoughtful approach
to using AI tools and support.

True foundational learning requires genuine intellectual effort — through challenge, rep-
etition, and peer-learning exchanges.

For a more complete overview of our stance on AI — as a learning tool, as part of the 42
training, and as an expectation in the job market — please refer to the dedicated FAQ
on the intranet.

● Main message
☛ Build strong foundations without shortcuts.

☛ Really develop tech & power skills.

☛ Experience real peer-learning, start learning how to learn and solve new problems.

☛ The learning journey is more important than the result.

☛ Learn about the risks associated with AI, and develop effective control practices
and countermeasures to avoid common pitfalls.

● Learner rules:
• You should apply reasoning to your assigned tasks, especially before turning to AI.

5

Libft Your very first own library

• You should not ask for direct answers to the AI.

• You should learn about 42 global approach on AI.

● Phase outcomes:
Within this foundational phase, you will get the following outcomes:

• Get proper tech and coding foundations.

• Know why and how AI can be dangerous during this phase.

● Comments and example:
• Yes, we know AI exists — and yes, it can solve your projects. But you’re here to

learn, not to prove that AI has learned. Don’t waste your time (or ours) just to
demonstrate that AI can solve the given problem.

• Learning at 42 isn’t about knowing the answer — it’s about developing the ability
to find one. AI gives you the answer directly, but that prevents you from building
your own reasoning. And reasoning takes time, effort, and involves failure. The
path to success is not supposed to be easy.

• Keep in mind that during exams, AI is not available — no internet, no smartphones,
etc. You’ll quickly realise if you’ve relied too heavily on AI in your learning process.

• Peer learning exposes you to different ideas and approaches, improving your inter-
personal skills and your ability to think divergently. That’s far more valuable than
just chatting with a bot. So don’t be shy — talk, ask questions, and learn together!

• Yes, AI will be part of the curriculum — both as a learning tool and as a topic
in itself. You’ll even have the chance to build your own AI software. In order to
learn more about our crescendo approach you’ll go through in the documentation
available on the intranet.

✓ Good practice:

I’m stuck on a new concept. I ask someone nearby how they approached it. We talk
for 10 minutes — and suddenly it clicks. I get it.

✗ Bad practice:

I secretly use AI, copy some code that looks right. During peer evaluation, I can’t
explain anything. I fail. During the exam — no AI — I’m stuck again. I fail.

6

Chapter IV

Mandatory part

Program Name libft.a
Files to Submit Makefile, libft.h, ft_*.c
Makefile NAME, all, clean, fclean, re
External Function Detailed below
Libft authorized n/a
Description Create your own library: a collection of functions

that will serve as a useful tool throughout your
cursus.

IV.1 Technical considerations
• Declaring global variables is strictly forbidden.

• If you need helper functions to break down a more complex function, define them
as static functions to restrict their scope to the appropriate file.

• All files must be placed at the root of your repository.

• Submitting unused files is not allowed.

• Every .c file must compile with the following flags: -Wall -Wextra -Werror.

• You must use the ar command to create your library. The use of libtool is strictly
forbidden.

• Your libft.a must be created at the root of your repository.

7

Libft Your very first own library

IV.2 Part 1 - Libc functions
To begin, you must reimplement a set of functions from the libc. Your version will have
the same prototypes and behaviors as the originals, adhering strictly to their definitions
in the man page. The only difference will be their names, as they must start with the
’ft_’ prefix. For example, strlen becomes ft_strlen.

Some of the function prototypes you need to reimplement use the
’restrict’ qualifier. This keyword is part of the C99 standard.
Therefore, it is forbidden to include it in your own prototypes or to
compile your code with the -std=c99 flag.

The following functions must be rewritten without relying on external functions:

• isalpha

• isdigit

• isalnum

• isascii

• isprint

• strlen

• memset

• bzero

• memcpy

• memmove

• strlcpy

• strlcat

• toupper

• tolower

• strchr

• strrchr

• strncmp

• memchr

• memcmp

• strnstr

• atoi

To implement the two following functions, you will use malloc():

• calloc • strdup

Depending on your current operating system, the ’calloc’ function’s
behavior may differ from its man page description. Follow this
rule instead: If nmemb or size is 0, then calloc() returns a unique
pointer value that can be successfully passed to free().

Some functions that you must reimplement, such as strlcpy, strlcat,
and bzero, are not included by default in the GNU C Library (glibc).
To test them against the system standard, you may need to include
<bsd/string.h> and compile with the -lbsd flag.
This behaviour is specific to glibc systems. If you are curious,
take the opportunity to explore the differences between glibc and BSD
libc.

8

Libft Your very first own library

IV.3 Part 2 - Additional functions
In this second part, you must develop a set of functions that are either not included in
the libc, or exist in a different form.

Some of the functions from Part 1 may be useful for implementing the
functions below.

Function Name ft_substr
Prototype char *ft_substr(char const *s, unsigned int start,

size_t len);
Files to Submit -
Parameters s: The original string from which to create the

substring.
start: The starting index of the substring within
’s’.
len: The maximum length of the substring.

Return Value The substring.
NULL if the allocation fails.

External Function malloc
Description Allocates memory (using malloc(3)) and returns a

substring from the string ’s’.
The substring starts at index ’start’ and has a
maximum length of ’len’.

Function Name ft_strjoin
Prototype char *ft_strjoin(char const *s1, char const *s2);
Files to Submit -
Parameters s1: The prefix string.

s2: The suffix string.
Return Value The new string.

NULL if the allocation fails.
External Function malloc
Description Allocates memory (using malloc(3)) and returns a

new string, which is the result of concatenating
’s1’ and ’s2’.

9

Libft Your very first own library

Function Name ft_strtrim
Prototype char *ft_strtrim(char const *s1, char const *set);
Files to Submit -
Parameters s1: The string to be trimmed.

set: The string containing the set of characters
to be removed.

Return Value The trimmed string.
NULL if the allocation fails.

External Function malloc
Description Allocates memory (using malloc(3)) and returns a

copy of ’s1’ with characters from ’set’ removed
from the beginning and the end.

Function Name ft_split
Prototype char **ft_split(char const *s, char c);
Files to Submit -
Parameters s: The string to be split.

c: The delimiter character.
Return Value The array of new strings resulting from the split.

NULL if the allocation fails.
External Function malloc, free
Description Allocates memory (using malloc(3)) and returns an

array of strings obtained by splitting ’s’ using
the character ’c’ as a delimiter. The array must
end with a NULL pointer.

Function Name ft_itoa
Prototype char *ft_itoa(int n);
Files to Submit -
Parameters n: The integer to convert.
Return Value The string representing the integer.

NULL if the allocation fails.
External Function malloc
Description Allocates memory (using malloc(3)) and returns

a string representing the integer received as an
argument. Negative numbers must be handled.

10

Libft Your very first own library

Function Name ft_strmapi
Prototype char *ft_strmapi(char const *s, char (*f)(unsigned

int, char));
Files to Submit -
Parameters s: The string to iterate over.

f: The function to apply to each character.
Return Value The string created from the successive applications

of ’f’.
Returns NULL if the allocation fails.

External Function malloc
Description Applies the function f to each character of the

string s, passing its index as the first argument
and the character itself as the second. A new
string is created (using malloc(3)) to store the
results from the successive applications of f.

Function Name ft_striteri
Prototype void ft_striteri(char *s, void (*f)(unsigned int,

char*));
Files to Submit -
Parameters s: The string to iterate over.

f: The function to apply to each character.
Return Value None
External Function None
Description Applies the function ’f’ to each character of the

string passed as argument, passing its index as
the first argument. Each character is passed by
address to ’f’ so it can be modified if necessary.

Function Name ft_putchar_fd
Prototype void ft_putchar_fd(char c, int fd);
Files to Submit -
Parameters c: The character to output.

fd: The file descriptor on which to write.
Return Value None
External Function write
Description Outputs the character ’c’ to the specified file

descriptor.

11

Libft Your very first own library

Function Name ft_putstr_fd
Prototype void ft_putstr_fd(char *s, int fd);
Files to Submit -
Parameters s: The string to output.

fd: The file descriptor on which to write.
Return Value None
External Function write
Description Outputs the string ’s’ to the specified file

descriptor.

Function Name ft_putendl_fd
Prototype void ft_putendl_fd(char *s, int fd);
Files to Submit -
Parameters s: The string to output.

fd: The file descriptor on which to write.
Return Value None
External Function write
Description Outputs the string ’s’ to the specified file

descriptor followed by a newline.

Function Name ft_putnbr_fd
Prototype void ft_putnbr_fd(int n, int fd);
Files to Submit -
Parameters n: The integer to output.

fd: The file descriptor on which to write.
Return Value None
External Function write
Description Outputs the integer ’n’ to the specified file

descriptor.

12

Chapter V

Bonus part

Once you have completed the mandatory part, consider taking on this extra challenge.
Successfully completing this section will earn you bonus points.

Memory and string manipulation functions are useful. But you will soon discover that
manipulating lists is even more useful.

You have to use the following structure to represent a node of your list. Add its declara-
tion to your libft.h file:

typedef struct s_list
{

void *content;
struct s_list *next;

} t_list;

The members of the t_list struct are:

• content: The data contained in the node.
Using void * allows you to store any type of data.

• next: The address of the next node, or NULL if the current node is the last one.

In your Makefile, add a make bonus rule to add the bonus functions in your libft.a.

The bonus part will only be evaluated if the mandatory part is
perfect. "Perfect" means the mandatory functions are implemented
correctly and work without issues. If you fail to meet ALL the
mandatory requirements, the bonus part will not be considered at all.

13

Libft Your very first own library

Implement the following functions in order to easily use your lists.

Function Name ft_lstnew
Prototype t_list *ft_lstnew(void *content);
Files to Submit -
Parameters content: The content to store in the new node.
Return Value A pointer to the new node
External Function malloc
Description Allocates memory (using malloc(3)) and returns

a new node. The ’content’ member variable is
initialized with the given parameter ’content’.
The variable ’next’ is initialized to NULL.

Function Name ft_lstadd_front
Prototype void ft_lstadd_front(t_list **lst, t_list *new);
Files to Submit -
Parameters lst: The address of a pointer to the first node of

a list.
new: The address of a pointer to the node to be
added.

Return Value None
External Function None
Description Adds the node ’new’ at the beginning of the list.

Function Name ft_lstsize
Prototype int ft_lstsize(t_list *lst);
Files to Submit -
Parameters lst: The beginning of the list.
Return Value The length of the list
External Function None
Description Counts the number of nodes in the list.

Function Name ft_lstlast
Prototype t_list *ft_lstlast(t_list *lst);
Files to Submit -
Parameters lst: The beginning of the list.
Return Value Last node of the list
External Function None
Description Returns the last node of the list.

14

Libft Your very first own library

Function Name ft_lstadd_back
Prototype void ft_lstadd_back(t_list **lst, t_list *new);
Files to Submit -
Parameters lst: The address of a pointer to the first node of

a list.
new: The address of a pointer to the node to be
added.

Return Value None
External Function None
Description Adds the node ’new’ at the end of the list.

Function Name ft_lstdelone
Prototype void ft_lstdelone(t_list *lst, void (*del)(void

*));
Files to Submit -
Parameters lst: The node to free.

del: The address of the function used to delete
the content.

Return Value None
External Function free
Description Takes a node as parameter and frees its content

using the function ’del’. Free the node itself but
does NOT free the next node.

Function Name ft_lstclear
Prototype void ft_lstclear(t_list **lst, void (*del)(void

*));
Files to Submit -
Parameters lst: The address of a pointer to a node.

del: The address of the function used to delete
the content of the node.

Return Value None
External Function free
Description Deletes and frees the given node and all its

successors, using the function ’del’ and free(3).
Finally, set the pointer to the list to NULL.

15

Libft Your very first own library

Function Name ft_lstiter
Prototype void ft_lstiter(t_list *lst, void (*f)(void *));
Files to Submit -
Parameters lst: The address of a pointer to a node.

f: The address of the function to apply to each
node’s content.

Return Value None
External Function None
Description Iterates through the list ’lst’ and applies the

function ’f’ to the content of each node.

Function Name ft_lstmap
Prototype t_list *ft_lstmap(t_list *lst, void *(*f)(void *),

void (*del)(void *));
Files to Submit -
Parameters lst: The address of a pointer to a node.

f: The address of the function applied to each
node’s content.
del: The address of the function used to delete a
node’s content if needed.

Return Value The new list.
NULL if the allocation fails.

External Function malloc, free
Description Iterates through the list ’lst’, applies the

function ’f’ to each node’s content, and creates
a new list resulting of the successive applications
of the function ’f’. The ’del’ function is used to
delete the content of a node if needed.

16

Chapter VI

Submission and peer-evaluation

Submit your assignment in your Git repository as usual. Only the work inside your
repository will be evaluated during the defense. Make sure to double-check the names of
your files to ensure they are correct.

Place all your files at the root of your repository.

During the evaluation, a brief modification of the project may occasionally be re-
quested. This could involve a minor behavior change, a few lines of code to write or
rewrite, or an easy-to-add feature.

While this step may not be applicable to every project, you must be prepared for it
if it is mentioned in the evaluation guidelines.

This step is meant to verify your actual understanding of a specific part of the project.
The modification can be performed in any development environment you choose (e.g.,
your usual setup), and it should be feasible within a few minutes — unless a specific
timeframe is defined as part of the evaluation.
You can, for example, be asked to make a small update to a function or script, modify a
display, or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the evaluation guidelines and may
vary from one evaluation to another for the same project.

Rnpu cebwrpg va gur 42 Pbzzba Pber pbagnvaf na rapbqrq uvag. Sbe rnpu
pvepyr, bayl bar cebwrpg cebivqrf gur pbeerpg uvag arrqrq sbe gur
arkg pvepyr. Guvf punyyratr vf vaqvivqhny, jvgu n svany cevmr sbe
bar fghqrag. Fgnss zrzoref znl cnegvpvcngr ohg ner abg ryvtvoyr sbe n
cevmr. Ner lbh nzbat gur irel svefg gb fbyir n pvepyr? Fraq gur uvagf
jvgu rkcynangvbaf gb by@42.se gb or nqqrq gb gur yrnqreobneq. Gur
uvag sbe guvf svefg cebwrpg, juvpu znl pbagnva nantenzzrq jbeqf, vf:
Jbys bs ntragvir cnegvpyrf gung qvfcebir terral gb lbhe ubzrf qan
gung cebjfr lbhe fgbby

17

	Introduction
	Common Instructions
	AI Instructions
	Mandatory part
	Technical considerations
	Part 1 - Libc functions
	Part 2 - Additional functions

	Bonus part
	Submission and peer-evaluation

