
ft_printf

Because ft_putnbr() and ft_putstr() aren’t enough

Summary: The goal of this project is quite straightforward: you will reimplement
printf(). This will primarily teach you how to handle a variable number of arguments.

How cool is that? Actually, it’s pretty cool! :)

Version: 11.0



Contents
I Introduction 2

II Common Instructions 3

III AI Instructions 5

IV Mandatory part 7

V Bonus part 9

VI Submission and peer-evaluation 10

1



Chapter I

Introduction

You will explore one of the most popular and versatile functions in C: printf(). This
exercise provides an excellent opportunity to improve your programming skills. It is con-
sidered moderately difficult.

You will discover variadic functions in C.

The key to a successful ft_printf is well-structured and extensible code.

Once you have successfully completed this assignment, you will be
allowed to add your ft_printf() to your libft, making it available
for use in your school C projects.

2



Chapter II

Common Instructions

• Your project must be written in C.

• Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check, and you will receive a 0 if
there is a norm error.

• Your functions should not quit unexpectedly (segmentation fault, bus error, dou-
ble free, etc.) except for undefined behavior. If this occurs, your project will be
considered non-functional and will receive a 0 during the evaluation.

• All heap-allocated memory must be properly freed when necessary. Memory leaks
will not be tolerated.

• If the subject requires it, you must submit a Makefile that compiles your source
files to the required output with the flags -Wall, -Wextra, and -Werror, using cc.
Additionally, your Makefile must not perform unnecessary relinking.

• Your Makefile must contain at least the rules $(NAME), all, clean, fclean and
re.

• To submit bonuses for your project, you must include a bonus rule in your Makefile,
which will add all the various headers, libraries, or functions that are not allowed in
the main part of the project. Bonuses must be placed in _bonus.{c/h} files, unless
the subject specifies otherwise. The evaluation of mandatory and bonus parts is
conducted separately.

• If your project allows you to use your libft, you must copy its sources and its
associated Makefile into a libft folder. Your project’s Makefile must compile
the library by using its Makefile, then compile the project.

• We encourage you to create test programs for your project, even though this work
does not need to be submitted and will not be graded. It will give you an
opportunity to easily test your work and your peers’ work. You will find these tests
especially useful during your defence. Indeed, during defence, you are free to use
your tests and/or the tests of the peer you are evaluating.

• Submit your work to the assigned Git repository. Only the work in the Git repos-
itory will be graded. If Deepthought is assigned to grade your work, it will occur

3



ft_printf Because ft_putnbr() and ft_putstr() aren’t enough

after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

4



Chapter III

AI Instructions

● Context
This project is designed to help you discover the fundamental building blocks of your
ICT training.

To properly anchor key knowledge and skills, it’s essential to adopt a thoughtful approach
to using AI tools and support.

True foundational learning requires genuine intellectual effort — through challenge, rep-
etition, and peer-learning exchanges.

For a more complete overview of our stance on AI — as a learning tool, as part of the
ICT curriculum, and as an expectation in the job market — please refer to the dedicated
FAQ on the intranet.

● Main message
☛ Build strong foundations without shortcuts.

☛ Really develop tech & power skills.

☛ Experience real peer-learning, start learning how to learn and solve new problems.

☛ The learning journey is more important than the result.

☛ Learn about the risks associated with AI, and develop effective control practices
and countermeasures to avoid common pitfalls.

● Learner rules:
• You should apply reasoning to your assigned tasks, especially before turning to AI.

5



ft_printf Because ft_putnbr() and ft_putstr() aren’t enough

• You should not ask for direct answers to the AI.

• You should learn about 42 global approach on AI.

● Phase outcomes:
Within this foundational phase, you will get the following outcomes:

• Get proper tech and coding foundations.

• Know why and how AI can be dangerous during this phase.

● Comments and example:
• Yes, we know AI exists — and yes, it can solve your projects. But you’re here to

learn, not to prove that AI has learned. Don’t waste your time (or ours) just to
demonstrate that AI can solve the given problem.

• Learning at 42 isn’t about knowing the answer — it’s about developing the ability
to find one. AI gives you the answer directly, but that prevents you from building
your own reasoning. And reasoning takes time, effort, and involves failure. The
path to success is not supposed to be easy.

• Keep in mind that during exams, AI is not available — no internet, no smartphones,
etc. You’ll quickly realise if you’ve relied too heavily on AI in your learning process.

• Peer learning exposes you to different ideas and approaches, improving your inter-
personal skills and your ability to think divergently. That’s far more valuable than
just chatting with a bot. So don’t be shy — talk, ask questions, and learn together!

• Yes, AI will be part of the curriculum — both as a learning tool and as a topic
in itself. You’ll even have the chance to build your own AI software. In order to
learn more about our crescendo approach you’ll go through in the documentation
available on the intranet.

✓ Good practice:
I’m stuck on a new concept. I ask someone nearby how they approached it. We talk
for 10 minutes — and suddenly it clicks. I get it.

✗ Bad practice:
I secretly use AI, copy some code that looks right. During peer evaluation, I can’t
explain anything. I fail. During the exam — no AI — I’m stuck again. I fail.

6



Chapter IV

Mandatory part

Program name libftprintf.a
Turn in files Makefile, *.h, */*.h, *.c, */*.c
Makefile NAME, all, clean, fclean, re
External functs. malloc, free, write,

va_start, va_arg, va_copy, va_end
Libft authorized Yes
Description Write a library that contains ft_printf(), a

function that will mimic the original printf()

You have to recode the printf() function from libc.

The prototype of ft_printf() is:

int ft_printf(const char *, ...);

Here are the requirements:

• Do not implement the original printf()’s buffer management.

• Your function has to handle the following conversions: cspdiuxX%

• Your implementation will be evaluated against the behavior of the original printf().

• You must use the command ar to create your library.
The use of the libtool command is strictly forbidden.

• libftprintf.a must be created at the root of your repository.

7



ft_printf Because ft_putnbr() and ft_putstr() aren’t enough

You have to implement the following conversions:

• %c Prints a single character.

• %s Prints a string (as defined by the common C convention).

• %p The void * pointer argument has to be printed in hexadecimal format.

• %d Prints a decimal (base 10) number.

• %i Prints an integer in base 10.

• %u Prints an unsigned decimal (base 10) number.

• %x Prints a number in hexadecimal (base 16) lowercase format.

• %X Prints a number in hexadecimal (base 16) uppercase format.

• %% Prints a percent sign.

8



Chapter V

Bonus part

You don’t have to do all the bonuses.

Bonus list:

• Manage any combination of the following flags: ’-0.’ and the field minimum width
under all conversions.

• Manage all the following flags: ’# +’ (Yes, one of them is a space)

If you plan to complete the bonus part, consider the implementation
of your additional features from the beginning. This will help you
avoid the pitfalls of a naive approach.

The bonus part will only be assessed if the mandatory part is
PERFECT. To be considered perfect, the mandatory part must be fully
implemented and function correctly without any errors. If you have
not passed ALL the mandatory requirements, your bonus part will not
be evaluated at all.

9



Chapter VI

Submission and peer-evaluation

Submit your assignment in your Git repository as usual. Only the work inside your repos-
itory will be evaluated during the defense. Don’t hesitate to double-check the names of
your files to ensure they are correct.

Once you have completed this assignment, you will be allowed to add your ft_printf()
to your libft, enabling its use in your school C projects.

During the evaluation, a brief modification of the project may occasionally be re-
quested. This could involve a minor behavior change, a few lines of code to write or
rewrite, or an easy-to-add feature.

While this step may not be applicable to every project, you must be prepared for it
if it is mentioned in the evaluation guidelines.

This step is meant to verify your actual understanding of a specific part of the project.
The modification can be performed in any development environment you choose (e.g.,
your usual setup), and it should be feasible within a few minutes — unless a specific
timeframe is defined as part of the evaluation.
You can, for example, be asked to make a small update to a function or script, modify a
display, or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the evaluation guidelines and may
vary from one evaluation to another for the same project.

++++++++++[>+>+++>+++++++>++++++++++<<<<-]>>>.>---.++++++++++++.++.+++
+++.--.<<++.>>------.------------.+++++++++++++.<<.>>++++++.------------
.-------. +++++++++++++++++++.<<.>>----------------.+++++.+++++++++.---
----------.--.+ ++++++++++++++++.--------.+++++++++++++.<<.>>----------
-------------.+++.+++ ++++.---.----.+++++++++++++++++.---------------
--.-.<<.>>+++++.+++++.<<.>-------...

10


	Introduction
	Common Instructions
	AI Instructions
	Mandatory part
	Bonus part
	Submission and peer-evaluation

