Push swap

Because Swap push doesn’t feel as natural

Summary:
In this project, you will sort data in a stack using a limited set of instructions, aiming
to achieve the lowest possible number of actions. To succeed, you will need to work with
various algorithms and choose the most appropriate one for optimized data sorting.

Version: 9.0

Contents

I Foreword

11 Introduction

111 Objectives

v Common Instructions
A% AT Instructions

VI Mandatory part
VI.1 Therules
VI.2 Example
VI.3 The "push_swap' program
VI.4 Benchmark

VII Bonus part
VII.1 The "checker" program

VIII Submission and peer-evaluation

Chapter 1

Foreword

#include <stdio.h>

int main(void)

{
printf("hello, world\n");
return O;

o ASM

cseg segment
assume cs:cseg, ds:cseg

main proc
jmp debut
'Hello world!$'

e LOLCODE

HAT

CAN HAS STDIO?
VISIBLE "HELLO WORLD!"
KTHXBYE

"Hello world!";

e BrainFuck

++++++ -+ [D+ Db > +<<LL<-]
>++ . >4 FHttttt, A >,

<K<++++tttttttttt+t >+, -

Push__swap Because Swap_ push doesn’t feel as natural

o C#

sing System;

public class HelloWorld {

public static void Main () {
Console.WriteLine("Hello world!");

}

e HTML5

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Hello world !</title>
</head>
<body>
<p>Hello World !</p>
</body>
</html>

e YASL
"Hello world!"
[print

e 0Caml

let main () =
print_endline "Hello world !"

let _ = main ()

Chapter 11

Introduction

The Push swap project is a simple yet highly structured algorithmic challenge: you
need to sort data.

You have at your disposal a set of integer values, 2 stacks, and a set of instructions to
manipulate both stacks.

Your goal? Write a C program called push_swap that calculates and displays the
shortest sequence of Push_swap instructions needed to sort the given integers.
Easy?

We'll see...

Chapter 111

Objectives

Writing a sorting algorithm is always a crucial step in a developer’s journey. It is often
the first encounter with the concept of complexity.

Sorting algorithms and their complexities are common topics in job interviews. Now is a
great time to explore these concepts, as you will likely encounter them in the future.
The learning objectives of this project are rigor, proficiency in C, and the application of
basic algorithms, with a particular focus on their complexity.

Sorting values is straightforward, but finding the fastest way to sort them is more chal-
lenging. The most efficient sorting method can vary depending on the arrangement of
integers.

https://en.wikipedia.org/wiki/Analysis_of_algorithms

Chapter 1V

Common Instructions

e Your project must be written in C.

e Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check, and you will receive a 0 if
there is a norm error.

e Your functions should not quit unexpectedly (segmentation fault, bus error, dou-
ble free, etc.) except for undefined behavior. If this occurs, your project will be
considered non-functional and will receive a 0 during the evaluation.

e All heap-allocated memory must be properly freed when necessary. Memory leaks
will not be tolerated.

e [f the subject requires it, you must submit a Makefile that compiles your source
files to the required output with the flags -Wall, -Wextra, and -Werror, using cc.
Additionally, your Makefile must not perform unnecessary relinking.

e Your Makefile must contain at least the rules $(NAME), all, clean, fclean and
re.

e To submit bonuses for your project, you must include a bonus rule in your Makefile,
which will add all the various headers, libraries, or functions that are not allowed in
the main part of the project. Bonuses must be placed in _bonus.{c/h} files, unless
the subject specifies otherwise. The evaluation of mandatory and bonus parts is
conducted separately.

e If your project allows you to use your libft, you must copy its sources and its
associated Makefile into a libft folder. Your project’s Makefile must compile
the library by using its Makefile, then compile the project.

e We encourage you to create test programs for your project, even though this work
does not need to be submitted and will not be graded. It will give you an
opportunity to easily test your work and your peers’ work. You will find these tests
especially useful during your defence. Indeed, during defence, you are free to use
your tests and/or the tests of the peer you are evaluating.

e Submit your work to the assigned Git repository. Only the work in the Git repos-
itory will be graded. If Deepthought is assigned to grade your work, it will occur

Push_swap

Because Swap_ push doesn’t feel as natural

after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

Chapter V

Al Instructions

® Context

During your learning journey, Al can assist with many different tasks. Take the time to
explore the various capabilities of Al tools and how they can support your work. How-
ever, always approach them with caution and critically assess the results. Whether it’s
code, documentation, ideas, or technical explanations, you can never be completely sure
that your question was well-formed or that the generated content is accurate. Your peers
are a valuable resource to help you avoid mistakes and blind spots.

® Main message

Use Al to reduce repetitive or tedious tasks.

Develop prompting skills — both coding and non-coding — that will benefit your
future career.

Learn how Al systems work to better anticipate and avoid common risks, biases,
and ethical issues.

Continue building both technical and power skills by working with your peers.

Only use Al-generated content that you fully understand and can take responsibility
for.

@® Learner rules:

e You should take the time to explore AI tools and understand how they work, so
you can use them ethically and reduce potential biases.

e You should reflect on your problem before prompting — this helps you write clearer,
more detailed, and more relevant prompts using accurate vocabulary.

e You should develop the habit of systematically checking, reviewing, questioning,
and testing anything generated by Al

e You should always seek peer review — don’t rely solely on your own validation.

Push__swap Because Swap_ push doesn’t feel as natural

@® Phase outcomes:

e Develop both general-purpose and domain-specific prompting skills.
e Boost your productivity with effective use of Al tools.

e Continue strengthening computational thinking, problem-solving, adaptability, and
collaboration.

® Comments and examples:

e You'll regularly encounter situations — exams, evaluations, and more — where
you must demonstrate real understanding. Be prepared, keep building both your
technical and interpersonal skills.

e Explaining your reasoning and debating with peers often reveals gaps in your un-
derstanding. Make peer learning a priority.

e Al tools often lack your specific context and tend to provide generic responses. Your
peers, who share your environment, can offer more relevant and accurate insights.

e Where Al tends to generate the most likely answer, your peers can provide alter-
native perspectives and valuable nuance. Rely on them as a quality checkpoint.

v Good practice:

I ask AIL: “How do I test a sorting function?” It gives me a few ideas. I try them out
and review the results with a peer. We refine the approach together.

X Bad practice:

I ask AI to write a whole function, copy-paste it into my project. During peer-
evaluation, I can’t explain what it does or why. I lose credibility — and I fail my
project.

v Good practice:

[use AI to help design a parser. Then I walk through the logic with a peer. We catch
two bugs and rewrite it together — better, cleaner, and fully understood.

X Bad practice:

I let Copilot generate my code for a key part of my project. It compiles, but I can’t
explain how it handles pipes. During the evaluation, I fail to justify and I fail my
project.

Chapter VI

Mandatory part

V1.1 The rules

e You have 2 stacks named a and b.
e At the beginning:

o The stack a contains a random number of unique negative and/or positive
integers.

o The stack b is empty.

e The goal is to sort the numbers in stack a in ascending order. To achieve this, you
have the following operations at your disposal:

sa (swap a): Swap the first 2 elements at the top of stack a.
Do nothing if there is only one element or none.

sb (swap b): Swap the first 2 elements at the top of stack b.
Do nothing if there is only one element or none.

ss : sa and sb at the same time.

pa (push a): Take the first element at the top of b and put it at the top of a.
Do nothing if b is empty.

pb (push b): Take the first element at the top of a and put it at the top of b.
Do nothing if a is empty.

ra (rotate a): Shift up all elements of stack a by 1.
The first element becomes the last one.

rb (rotate b): Shift up all elements of stack b by 1.
The first element becomes the last one.

rr : ra and rb at the same time.

rra (reverse rotate a): Shift down all elements of stack a by 1.
The last element becomes the first one.

rrb (reverse rotate b): Shift down all elements of stack b by 1.
The last element becomes the first one.

rrr : rra and rrb at the same time.

10

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

Push_swap Because Swap_push doesn’t feel as natural

V1.2 Example

To illustrate the effect of some of these instructions, let’s sort a random list of integers.
In this example, we’ll consider that both stacks grow from the right.

ra rb (equiv. to

rra rrb (equiv. to rrr):

pa pa pa:

The integers in stack a get sorted in 12 instructions. Can you do better?

Push__swap Because Swap_ push doesn’t feel as natural

V1.3 The "push__swap" program

Program name push_swap

Turn in files Makefile, *.h, *.c

Makefile NAME, all, clean, fclean, re
Arguments stack a: A list of integers

External functs.
e read, write, malloc, free,
exit

e ft printf or any equivalent
YOU coded

Libft authorized Yes

Description Sort stacks

Your project must comply with the following rules:

e You have to turn in a Makefile which will compile your source files. It must not
relink.

e Global variables are forbidden.

e You have to write a program named push_swap that takes as an argument the stack
a formatted as a list of integers. The first argument should be at the top of the
stack (be careful about the order).

e The program must display the shortest sequence of instructions needed to sort stack
a with the smallest number at the top.

e Instructions must be separated by a "\n’ and nothing else.

e The goal is to sort the stack with the lowest possible number of operations. During
the evaluation process, the number of instructions found by your program will be
compared against a limit: the maximum number of operations tolerated. If your
program either displays a longer list or if the numbers aren’t sorted properly, your
grade will be 0.

e If no parameters are specified, the program must not display anything and should
return to the prompt.

e In case of error, it must display "Error" followed by an "\n’ on the standard error.
Errors include, for example: some arguments not being integers, some arguments
exceeding the integer limits, and/or the presence of duplicates.

12

Push_swap Because Swap_ push doesn’t feel as natural

$>./push_swap 2 1 3 6 5 8

During the evaluation process, a binary will be provided in order to properly check
your program.

It will work as follows:

$>ARG="4 67 3 87 23"; ./push_swap $ARG | wc -1
6
$>ARG="4 67 3 87 23"; ./push_swap $ARG | ./checker_0S $ARG

If the program checker_ 0S displays "KO", it means that your push_swap came up
with a list of instructions that doesn’t sort the numbers.

The checker_0S program is available in the resources of the project
in the intranet.

You can find a description of how it works in the Bonus Part of this

document .

13

Push__swap Because Swap_ push doesn’t feel as natural

V1.4 Benchmark

To validate this project, you must perform certain sorts with a minimal number of oper-
ations:

e For maximum project validation (100%) and eligibility for bonuses, you must:

o Sort 100 random numbers in fewer than 700 operations.

o Sort 500 random numbers in no more than 5500 operations.

e For minimal project validation (which implies a minimum grade of 80%), you
can succeed with different averages:

o 100 numbers in under 1100 operations and 500 numbers in under
8500 operations

o 100 numbers in under 700 operations and 500 numbers in under
11500 operations

o 100 numbers in under 1300 operations and 500 numbers in under
5500 operations

All of this will be verified during your evaluation.

If you wish to complete the bonus part, you must thoroughly validate
the project with each benchmark step achieving the highest possible

sScore.

14

Chapter VII

Bonus part

Due to its simplicity, this project offers limited opportunities for additional features.
However, why not create your own checker?

Thanks to the checker program, you will be able to check whether
the list of instructions generated by the push_swap program actually

sorts the stack properly.

The bonus part will only be assessed if the mandatory part is
perfect. Perfect means the mandatory part has been fully completed
and functions without errors. In this project, this entails
validating all benchmarks without exception. If you have not
passed ALL the mandatory requirements,b your bonus part will not

be evaluated at all.

15

Push__swap Because Swap_ push doesn’t feel as natural

VII.1 The "checker" program

Program name checker

Turn in files *.h, *.c

Makefile bonus

Arguments stack a: A list of integers

External functs.
e read, write, malloc, free,
exit

e ft printf or any equivalent
YOU coded

Libft authorized Yes

Description Execute the sorting instructions

o Write a program named checker that takes as an argument the stack a formatted
as a list of integers. The first argument should be at the top of the stack (be careful
about the order). If no argument is given, it stops and displays nothing.

e It will then wait and read instructions from the standard input, with each instruc-
tion followed by "\n’ Once all the instructions have been read, the program has to
execute them on the stack received as an argument.

o [f after executing those instructions, the stack a is actually sorted and the stack b
is empty, then the program must display "OK" followed by a "\n’ on the standard
output.

e In every other case, it must display "KO" followed by a "\n’ on the standard output.

e In case of error, you must display "Error" followed by a "\n’ on the standard er-
ror. Errors include for example: some arguments are not integers, some arguments
are bigger than an integer, there are duplicates, an instruction doesn’t exist and/or
is incorrectly formatted.

$>./checker

3 2 one O

L

16

Push_swap

Because Swap_ push doesn’t feel as natural

You DO NOT have to reproduce the exact same behavior as the provided
binary. It is mandatory to manage errors but it is up to you to

decide how you want to parse the arguments.

17

Chapter VIII

Submission and peer-evaluation

Submit your assignment in your Git repository as usual. Only the work inside your repos-
itory will be evaluated during the defense. Don’t hesitate to double check the names of
your files to ensure they are correct.

As these assignments are not verified by a program, feel free to organize your files
as you wish, as long as you turn in the mandatory files and comply with the requirements.

During the evaluation, a brief modification of the project may occasionally be re-
quested. This could involve a minor behavior change, a few lines of code to write or
rewrite, or an easy-to-add feature.

While this step may not be applicable to every project, you must be prepared for it
if it is mentioned in the evaluation guidelines.

This step is meant to verify your actual understanding of a specific part of the project.
The modification can be performed in any development environment you choose (e.g.,
your usual setup), and it should be feasible within a few minutes — unless a specific
timeframe is defined as part of the evaluation.

You can, for example, be asked to make a small update to a function or script, modify a
display, or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the evaluation guidelines and may
vary from one evaluation to another for the same project.

file.bfe:VABB7y09xm7xWXR0OeASsmsgnY0oOsDMJev7zFHhwQS8mvM8V5xQQp
Lc6cDCFXDWTiFzZ2H9skYkiJ/DpQtnM/uZ0

18

	Foreword
	Introduction
	Objectives
	Common Instructions
	AI Instructions
	Mandatory part
	The rules
	Example
	The "push_swap" program
	Benchmark

	Bonus part
	The "checker" program

	Submission and peer-evaluation

