
Pipex

Summary: This project will allow you to explore a UNIX mechanism in detail, one that
you are already familiar with, by implementing it in your program.

Version: 4.0

Contents
I Foreword 2

II Common Instructions 3

III AI Instructions 5

IV Mandatory part 7
IV.1 Examples . 8
IV.2 Requirements . 8

V Bonus part 9

VI Submission and peer-evaluation 10

1

Chapter I

Foreword

Cristina: "Go dance salsa somewhere! :)"

2

Chapter II

Common Instructions

• Your project must be written in C.

• Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check, and you will receive a 0 if
there is a norm error.

• Your functions should not quit unexpectedly (segmentation fault, bus error, dou-
ble free, etc.) except for undefined behavior. If this occurs, your project will be
considered non-functional and will receive a 0 during the evaluation.

• All heap-allocated memory must be properly freed when necessary. Memory leaks
will not be tolerated.

• If the subject requires it, you must submit a Makefile that compiles your source
files to the required output with the flags -Wall, -Wextra, and -Werror, using cc.
Additionally, your Makefile must not perform unnecessary relinking.

• Your Makefile must contain at least the rules $(NAME), all, clean, fclean and
re.

• To submit bonuses for your project, you must include a bonus rule in your Makefile,
which will add all the various headers, libraries, or functions that are not allowed in
the main part of the project. Bonuses must be placed in _bonus.{c/h} files, unless
the subject specifies otherwise. The evaluation of mandatory and bonus parts is
conducted separately.

• If your project allows you to use your libft, you must copy its sources and its
associated Makefile into a libft folder. Your project’s Makefile must compile
the library by using its Makefile, then compile the project.

• We encourage you to create test programs for your project, even though this work
does not need to be submitted and will not be graded. It will give you an
opportunity to easily test your work and your peers’ work. You will find these tests
especially useful during your defence. Indeed, during defence, you are free to use
your tests and/or the tests of the peer you are evaluating.

• Submit your work to the assigned Git repository. Only the work in the Git repos-
itory will be graded. If Deepthought is assigned to grade your work, it will occur

3

Pipex

after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

4

Chapter III

AI Instructions

● Context
During your learning journey, AI can assist with many different tasks. Take the time to
explore the various capabilities of AI tools and how they can support your work. How-
ever, always approach them with caution and critically assess the results. Whether it’s
code, documentation, ideas, or technical explanations, you can never be completely sure
that your question was well-formed or that the generated content is accurate. Your peers
are a valuable resource to help you avoid mistakes and blind spots.

● Main message
☛ Use AI to reduce repetitive or tedious tasks.

☛ Develop prompting skills — both coding and non-coding — that will benefit your
future career.

☛ Learn how AI systems work to better anticipate and avoid common risks, biases,
and ethical issues.

☛ Continue building both technical and power skills by working with your peers.

☛ Only use AI-generated content that you fully understand and can take responsibility
for.

● Learner rules:
• You should take the time to explore AI tools and understand how they work, so

you can use them ethically and reduce potential biases.

• You should reflect on your problem before prompting — this helps you write clearer,
more detailed, and more relevant prompts using accurate vocabulary.

• You should develop the habit of systematically checking, reviewing, questioning,
and testing anything generated by AI.

• You should always seek peer review — don’t rely solely on your own validation.

5

Pipex

● Phase outcomes:
• Develop both general-purpose and domain-specific prompting skills.

• Boost your productivity with effective use of AI tools.

• Continue strengthening computational thinking, problem-solving, adaptability, and
collaboration.

● Comments and examples:
• You’ll regularly encounter situations — exams, evaluations, and more — where

you must demonstrate real understanding. Be prepared, keep building both your
technical and interpersonal skills.

• Explaining your reasoning and debating with peers often reveals gaps in your un-
derstanding. Make peer learning a priority.

• AI tools often lack your specific context and tend to provide generic responses. Your
peers, who share your environment, can offer more relevant and accurate insights.

• Where AI tends to generate the most likely answer, your peers can provide alter-
native perspectives and valuable nuance. Rely on them as a quality checkpoint.

✓ Good practice:
I ask AI: “How do I test a sorting function?” It gives me a few ideas. I try them out
and review the results with a peer. We refine the approach together.

✗ Bad practice:
I ask AI to write a whole function, copy-paste it into my project. During peer-
evaluation, I can’t explain what it does or why. I lose credibility — and I fail my
project.

✓ Good practice:
I use AI to help design a parser. Then I walk through the logic with a peer. We catch
two bugs and rewrite it together — better, cleaner, and fully understood.

✗ Bad practice:
I let Copilot generate my code for a key part of my project. It compiles, but I can’t
explain how it handles pipes. During the evaluation, I fail to justify and I fail my
project.

6

Chapter IV

Mandatory part

Program name pipex
Turn in files Makefile, *.h, *.c
Makefile NAME, all, clean, fclean, re
Arguments file1 cmd1 cmd2 file2
External functs.

• open, close, read, write,
malloc, free, perror,
strerror, access, dup, dup2,
execve, exit, fork, pipe,
unlink, wait, waitpid

• ft_printf or any equivalent
YOU coded

Libft authorized Yes
Description This project focuses on handling pipes.

Your program should be executed as follows:

./pipex file1 cmd1 cmd2 file2

It must take 4 arguments:

• file1 and file2 are file names.

• cmd1 and cmd2 are shell commands with their parameters.

It must behave exactly like the following shell command:

$> < file1 cmd1 | cmd2 > file2

7

Pipex

IV.1 Examples
$> ./pipex infile "ls -l" "wc -l" outfile

Its behavior should be equivalent to: < infile ls -l | wc -l > outfile

$> ./pipex infile "grep a1" "wc -w" outfile

Its behavior should be equivalent to: < infile grep a1 | wc -w > outfile

IV.2 Requirements
Your project must comply with the following rules:

• You must submit a Makefile that compiles your source files. It must not perform
unnecessary relinking.

• Your program must never terminate unexpectedly (e.g., segmentation fault, bus
error, double free, etc.).

• Your program must not have memory leaks.

• If you are unsure, handle errors the same way as the shell command:
< file1 cmd1 | cmd2 > file2

8

Chapter V

Bonus part

You can earn extra points if you:

• Handle multiple pipes.

This:
$> ./pipex file1 cmd1 cmd2 cmd3 ... cmdn file2

Should behave like:
< file1 cmd1 | cmd2 | cmd3 ... | cmdn > file2

• Support « and » when the first parameter is "here_doc".

This:
$> ./pipex here_doc LIMITER cmd cmd1 file

Should behave like:
cmd << LIMITER | cmd1 >> file

The bonus part will only be assessed if the mandatory part is
PERFECT. Perfect means the mandatory part has been integrally done
and works without malfunctioning. If you have not passed ALL the
mandatory requirements, your bonus part will not be evaluated at all.

9

Chapter VI

Submission and peer-evaluation

Submit your assignment in your Git repository as usual. Only the work inside your repos-
itory will be evaluated during the defense. Don’t hesitate to double check the names of
your files to ensure they are correct.

During the evaluation, a brief modification of the project may occasionally be re-
quested. This could involve a minor behavior change, a few lines of code to write or
rewrite, or an easy-to-add feature.

While this step may not be applicable to every project, you must be prepared for it
if it is mentioned in the evaluation guidelines.

This step is meant to verify your actual understanding of a specific part of the project.
The modification can be performed in any development environment you choose (e.g.,
your usual setup), and it should be feasible within a few minutes — unless a specific
timeframe is defined as part of the evaluation.
You can, for example, be asked to make a small update to a function or script, modify a
display, or adjust a data structure to store new information, etc.

The details (scope, target, etc.) will be specified in the evaluation guidelines and may
vary from one evaluation to another for the same project.

file.bfe:VACsSfsWN1cy33ROeASsmsgnY0o0sDMJev7zFHhw
QS8mvM8V5xQQpLc6cDCFXDWTiFzZ2H9skYkiJ/DpQtnM/uZ0

10

	Foreword
	Common Instructions
	AI Instructions
	Mandatory part
	Examples
	Requirements

	Bonus part
	Submission and peer-evaluation

